Asymptotic Distributions of Error Density Estimators in First-order Autoregressive Models
نویسنده
چکیده
This paper considers the asymptotic distributions of the error density estimators in first-order autoregressive models. At a fixed point, the distribution of the error density estimator is shown to be normal. Globally, the asymptotic distribution of the maximum of a suitably normalized deviation of the density estimator from the expectation of the kernel error density (based on the true error) is the same as in the case of the one sample set up, which is given in Bickel and Rosenblatt (1973). AMS (2000) subject classification. Primary 62G07; secondary 62M10.
منابع مشابه
Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملConditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملAsymptotic distributions for quasi-efficient estimators in echelon VARMA models
Two linear estimators for stationary invertible vector autoregressive moving average (VARMA) models in echelon form – to achieve parameter unicity (identification) – with known Kronecker indices are studied. It is shown that both estimators are consistent and asymptotically normal with strong innovations. The first estimator is a generalized-least-squares (GLS) version of the two-step least-squ...
متن کاملStatistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کامل